Rainwater Harvesting

Franziska Meinzinger

Rainwater Management Options

Infiltration

Detention

Rainwater Harvesting

Source: Ferguson, 1998

Overview

- Runoff calculation
- Rainwater Infiltration
- Rainwater Harvesting

Data Needs -The Design Storm

Rainfall event characterised by rainfall intensity & duration -> total volume of rainwater

Recurrence interval for design storm is chosen balancing risks and costs

Example of an intensity-duration-frequency curve

Data Needs - The Design Flow

The total runoff volume is calculated based on:

- design storm
- size of the catchment area
- runoff coefficient: e.g.

Type of surface or land use	Runoff coefficient C
Forest	0.1 - 0.3
Turf or meadow	0.1 - 0.4
Cultivated field	0.2 - 0.4
Bare earth	0.2 - 0.9
Pavement, concrete or asphalt	0.8 - 0.9
Flat residential, about 30% impervious	0.4
Flat residential, about 60% impervious	0.55
Sloping residential, about 50% impervious	0.65
Sloping, built-up, about 70% impervious	0.8
Flat commercial, about 90% impervious	0.8

For flat slopes or permeable soils use the lower values, for steep slopes or impermeable soils use the higher values.

Runoff coefficients (Source: Ferguson & Debo, 1990)

Data Needs - The Design Flow

Runoff can be calculated using following formula:

$$Q_{T} = C * I_{T} * A$$

with:

- Q_T : runoff rate for a T-year storm, in liters/second
- C: runoff coefficient, nondimensional
- I_T : rainfall intensity for a T-year storm at a storm duration t, in liters/(second*hectare)
- A: area of the catchment area, in hectares

The cumulative volume of rainwater over the storm duration can be calculated by multiplying the average runoff rate Q by the design storm duration t:

$$V_{T} = 3600 * Q_{T} * t$$

with:

V_T: t: total runoff volume at time t for a T-year storm, in liters storm duration in hours

Rainwater Infiltration

Some advantages of local infiltration:

- recharge of groundwater
- preservation and/or enhancement of natural vegetation
- reduction of pollution transported to the receiving waters
- reduction of downstream flow peaks
- reduction of basement flooding in combined sewer systems
- reduction in the settlement of the surface in areas of groundwater depletion
- smaller storm sewers at a lesser cost

Rainwater Infiltration

Possible drawbacks of local infiltration:

- soils seal with time
- pollutants may be transferred to soil and groundwater
- some infiltration facilities may not receive proper maintenance
- groundwater level may rise and cause basement flooding or damage to building foundations

Source: Urbonas & Stahre (1993)

Preconditions for Rainwater Infiltration

- Vegetative cover: Rainwater can be absorbed by plant roots and can be returned to the atmosphere through plant respiration. The soil-vegetation complex functions to a certain degree as a filter that reduces clogging of the surface pores of the soil.
- Soil type and conditions: Effective porosity and permeability are soil parameters that influence the infiltration process (see slide "infiltration capacity"). Bedrock should not be within less than 1.2 meters of the infiltration surface.
- **Groundwater conditions**: Distance to groundwater and variation in groundwater levels are some of the information needed for planning infiltration facilities. It is recommended that the distance to groundwater is at least 1 meter.

Types of Infiltration Systems -Vegetated Swales

Source: Beecham (2001)

Source: CASQA (2004)

WEB BASED TRAINING 2005

Types of Infiltration Systems -Infiltration Trench

Source: Universität Trier (2004)

Design of Infiltration Systems

Water Balance: Storage = Inflow - Outflow

Source: Ferguson, 1998

Infiltration Capacity

Soil Type	Hydraulic conductivity k [m/s]
Gravel	10 ⁻³ - 10 ⁻¹
Sand	10 ⁻⁵ - 10 ⁻²
Silt	10 ⁻⁹ - 10 ⁻⁵
Clay (saturated)	<10 ⁻⁹

Source: Urbonas & Stahre, (1993)

Darcy's Law:
$$U = k * I$$

with:

- U: flow velocity in meters per second
- k: hydraulic conductivity in meters per second
- I: hydraulic gradient in meters per meter (\cong 1m/m)

Required Storage Volume

e.g. for swales, infiltration ditches etc.:

$$V_{req} = \left(\sum Q_{in} - \sum Q_{out}\right) \cdot t$$

$$V_{req} = \left[\left(A_{red} + A_{s}\right) \cdot 10^{-7} \cdot I_{T} - A_{s} \cdot 0.5 \cdot k\right] \cdot t \cdot 60 \cdot f_{Z}$$

V_{req}: required storage volume [m³]

- A_{S} : percolation surface area, can be assumed to vary between 0.05 * A_{red} and 0.2 * A_{red} [m²]
- A_{red} : reduced catchment area ($A_{red} = A * C$) [m²]
- k: hydraulic conductivity in saturated zone [m/s]
- I_T : rainfall intensity for a T-year storm at a storm duration t [I/(s*ha)]
- t: duration of the rainfall event [min]
 - safety factor (e.g. 1.2)

Rainwater Harvesting

Comprises many techniques that are used to supply rainwater collected from surfaces (roofs, ground surface, rock surface) for domestic or agricultural use.

Three main components:

- catchment area
- storage reservoir
- delivery system

Rainwater Harvesting

Benefits:

- Provision of inexpensive water, where there is inadequate groundwater supply or surface resources
- Recharge of groundwater
- Control of soil erosion and prevention of flooding

Limitations:

- Large storage tanks may be required
- Seasonal and interannual variations
- Possible pollution of rainwater

Examples of micro-catchment water harvesting

Source: FAO, 1999

Source: FAO, 1999

Examples of macro-catchment water harvesting

Source: FAO, 1999

Rainwater Storage Tanks

Photo: Meinzinger

Source:NERD (2005)

Source: Gould & Nissen-Petersen, 1999

Storage Tanks

- Storage tanks should be watertight with a solid, secure cover, a screened inlet, an overflow pipe and a covered manhole
- Filters to remove suspended pollutants (examples):

Calculation of Storage Capacity

Demand side approach:

storage requirement R = C * n * d

- with: C: Consumption per capita per day
 - n: number of people
 - d: longest average dry period

Supply side approach:

annual available water W = A * C * R

- with: A: catchment/roof area
 - C: runoff coefficient
 - R: average annual rainfall

Demand D = R as calculated above in the demand side approach

The storage requirement can be derived as maximum difference between the cumulative harvested water and the cumulative demand.

References

- Beecham, Simon (2001). *Stormwater Drainage*. http://services.eng.uts.edu.au/~simonb/Switch%20site/
- CASQA California Stormwater Association (2004) *Stormwater Best Management Handbook*. http://www.cabmphandbooks.com/
- CSE (2005) *Rainwater Harvesting*. Center for Science and Environment. www.rainwaterharvesting.org
- Ferguson, Bruce K. (1998). *Introduction to Stormwater: Concept, Purpose, Design*. John Wiley & Sons, USA.
- IIRR (1998) Sustainable Agriculture Extension Manual. http://www.iirr.org/
- Tanski, Jay (2000) *Stormwater Runoff Best Management Practices for Marinas*. http://www.seagrant.sunysb.edu/pages/BMPsForMarinas.htm
- UNEP (2000) International Source Book On Environmentally Sound Technologies for Wastewater and Stormwater Management. http://www.unep.or.jp/ietc/Publications/TechPublications/TechPub-15/main_index.asp
- Universität Trier (2004). *Muldenrigolensystem*. http://geo133.uni-trier.de/~regenwasser/dimensionierung/
- Urbonas, Ben & Stahre, Peter (1993). Stormwater: best management practices and detention for water quality, drainage and CSO management. PTR Prentice-Hall, Inc. USA.

