CONSTRUCTED WETLANDS FOR WASTEWATER TREATMENT

Fabio Masi, Italy Claudia Wendland, Germany Nathasith Chiarawatchai, Germany

Constructed Wetlands

DEFINITION:

"Constructed wetlands can be defined as engineered water saturated or unsaturated areas in which the natural removal processes for the water pollutants are reproduced and enhanced in order to optimize the purification performances"

Classification

KIND OF USED MACROPHYTES

- 1. Floating macrophyte-based system
- 2. Submerged macrophyte –based system
- 3. Rooted emergent macrophyte –based system

KIND OF WATER FLOW DIRECTION

- a) Systems with free water surface (FWS)
- b) Systems with horizontal subsurface flow (HSF)
- c) Systems with vertical subsurface flow (VSF)
- d) Hybrid systems (combinations of a,b,c)

Common configurations

Horizontal Flow Constructed Wetlands

Vertical Flow Constructed Wetlands

Free Water Surface (FWS) Systems

Removal mechanisms

Role of plants

Design Criteria

Hydrology Hydraulic Retention Time Hydraulic Loading Rate Filling Media (porosity, hydraulic conductivity kf) Redox conditions (aerobic, anaerobic, mix reactor) Geometry of the bed Waterproofing Inlet and Oulet devices Cells configuration (series and/or parallel) Choose of macrophytes Treatment goals (in terms of specific pollutants overall removal)

HF systems design

Detailed Component Design:

Inlet device

HF systems design

Detailed Component Design:

Oulet device

Vertical Flow CW Construction

Lübeck-Flintenbreite

www.flintenbreite.de/de/wasser1.html

Sealing and Drainage

VF systems design

Feeding and distribution system

Performance

Mean outlet values on 213 european HF CWs for secondary treatment

1st Case study: Constructed wetland Haran-Al-Awamied, Syria

(A. Mohamed 2004)

- Combined public sewer system
- 7000 pe
- Pre treatment in a sedimentation tank
- 2-reed beds (68 m x 22 m x 1.5 m) for wastewater treatment
- A reed bed (20 m x 10 m x 1.8 m) for sludge treatment
- A 150 m³ collection tank for treated water for irrigation purposes

http://www2.gtz.de/ecosan/download/ecosan-pds-015-Syria-HaranAIAwamied.pdf

Constructed wetland Haran-Al-Awamied Syria

A. Mohamed 2004

http://www2.gtz.de/ecosan/download/ecosan-pds-015-Syria-HaranAlAwamied.pdf

Parameter	Inlet	Outlet	Efficiency
COD mg/l	446	70	84%
BOD ₅ mg/l	220	32	85%
PO₄-P mg/l	19,3	6,1	68%
NO ₃ -N mg/l	1	45	
Worm-Egg	-	1 egg/l	

Technische Universität Hamburg-Han

2nd Case study: Treatment of "raw" wastewater

French system by CEMAGREF: with 2 stages VSF First stage of treatment: larger inlet size to prevent clogging

Molle et. al., CEMAGREF

2nd Case study: Treatment of "raw" wastewater

Second stage of treatment: finer inlet size to evenly distribute the wastewater

Molle et. al., CEMAGREF

3rd Case study "Lambertsmühle", Germany

Initiative and Finance:

- Wupperverband and Verein Lambertsmühle
 <u>Development of the Sanitation</u> <u>Concept</u>
- Otterwasser GmbH, Lübeck
 Scientific consultation
- TUHH Institute. of Wastewater Management

Elements of the Sanitation Concept:

- Urine-sorting Toilets and waterless Urinals
- Storage Tank for Yellow Water
- Pre-Composting Tank (2 chambers, Filter Bags)
- Constructed Wetland for filtered Grey- and Brownwater

Pilot Project Lambertsmühle Constructed Wetland - COD Concentrations

http://www.otterwasser.de/english/concepts/lande.htm

Pilot Project Lambertsmühle Constructed Wetland - Nitrogen Concentrations

http://www.otterwasser.de/english/concepts/lande.htm

Pilot Project *Lambertsmühle* Constructed Wetland - Phophorus Concentrations

http://www.otterwasser.de/english/concepts/lande.htm

THANK YOU

