OPERATION AND MANAGEMENT OF WASTEWATER TREATMENT PLANTS

Authors: Andrea Giordano Luigi Petta

ENEA, Ente per le Nuove Tecnologie, l'Energia e l'Ambiente Bologna, Italy

Keywords:

Maintenance, Wastewater, Operation Sheets, Operation Troubles, Remedial Actions

Operation and Maintenance Manual

The purpose is to provide WWTPs' operators with the proper understanding of recommended operating techniques and procedures, and the references necessary to efficiently operate and maintain their facilities.

The O&M manual shall include:

- a) Introduction
- b) Permits and Standards
- c) Description, Operation and Control of Wastewater Treatment Facilities
- d) Description, Operation and Control of Sludge Handling Facilities
- e) Personnel
- f) Sampling and Laboratory Analysis
- g) Records and Reporting
- h) Maintenance
- i) Emergency Operating and Response Program
 - Safety
- k) Utilities

j)

Operation and Maintenance Manual

Introduction

General description: WWTP, location, sensitive areas, site map.

Permits and Standards

Type of permit, description of responsibilities of the owner, operator and consulting engineer.

Description, Operation and Control of WWT Facilities

Description of each WWTP component, their function and operating method, from the point of generation (including the conveyance system) through the treatment processes to final disposal.

Description, Operation and Control of Sludge Handling Facilities Description of sludge handling and disposal requirements, including frequency and means of sludge removal from each unit process.

Personnel

Number and qualifications of the personnel, their duties and responsibilities. Weekly staff coverage and on-call and emergency operating personnel.

Operation and Maintenance Manual

Sampling and Laboratory Analysis

List of all samplings and analyses required, appropriate protocols for proper sampling, storage, transportation, and analysis. Quality control/quality assurance plan.

Records and Reporting

List of all reporting requirements, location and method of record keeping (daily logs)

Maintenance

List of spare parts and supplies needed for maintenance and repair. Chart itemizing all equipments, their associated maintenance action and the frequency of such action.

Emergency Operating and Response Program

Program detailing procedures to be followed in the events of emergency situation: emergency conditions, actions to be taken, responsible authorities, corrective actions.

Safety

Itemized list of safety and first aid equipment instruction.

Utilities

List of names and notification requirements for water, electric, gas and telephone services.

7 WEB BASED TRAINING 2005

Screening

Design Data

		Manually cleaned	Mechanically cleaned
Bar size:			
Width	[mm]	5 – 15	5 – 15
Depth	[mm]	25 – 75	25 – 75
Clear spacing between bars	[mm]	20 - 60	10 – 30
Slope from vertical	[°]	45 - 60	70 – 90
Approach velocity	[m s ⁻¹]	0.3 – 0.5	0.5 – 1
Allowable headloss	[m]	0.1 – 0.2	0.1 – 0.2

Screened Material characteristics

Clear spacing between bars [mm]	Volume of screenings [m ³ PE ⁻¹ y ⁻¹]	Suspended solids removal [%]	BOD₅ removal [%]
15	2 10 ⁻³ – 4 10 ⁻³	1 – 3	-
10	$3 \ 10^{-3} - 6 \ 10^{-3}$	2 - 5	1 – 3

A typical screen operation sheet should report details on routine inspections, lubrification and adjustment, performed by the operator.

Screening

Problem	Sand in the screen channel	Solid transport through the screen
Evidences	 Sand in the removed material Increased water level in the channel Less amount of sand removed by the sand- trap 	 Regular clogging of the pipes downstream the screen Finding inappropriate materials in the pump impeller
Causes	Low speed in the channelObstacles in the channel	 Solids removal not effective Incorrect piping design or installation
Tests- Analysis	 Measure the amount of sand in the channel bottom Measure the speed for different flowrates Verify the design of the channel 	 Check the presence of solids downstream the screen Check the pump water flow
Actions	 When < 0,5 m/s, the speed has to be increased by reducing the wet section in the channel 	 Removal of all the blocked material Replacement of the damaged moving parts

Grit Removal

The goal is to separate gravel and sand and other mineral materials down to a diameter between 0.2 and 0.1 mm.

There are three general types of grit chamber: *horizontal-flow* – of either *rectangular* or *square configuration* – and *aerated*.

The quantity of removed grit will vary depending on the type of sewer system, the caracheristics of the drainage area, etc.

Volume of grit [I PE ⁻¹ yr ⁻¹]	Volume of grit [I m ⁻³]	reference remark
40	0.02 - 0.2	ATV-Hanbuch, 1997 average: 0.06 l / m³
2.4 – 58.8		Londong, 1990
2		Imhoff, 1993 high-density areas
5		Imhoff, 1993 low-density areas
	0.01 – 0.1	Passino et al. (1999)
	0.004 - 0.2	Tchobanoglous, 2003 aerated grit chamber

Typical amounts of collected grit (combined sewer)

Collected grit moisture content ranges between 15 e 40%; volatile content, on dry basis, ranges between 20-50 %.

Grit Removal

Problem	Sand in the effluent	Organic matter in the removed solids
Evidences	 Sand in the units process downstream the sand trap Reduced amount of sand removed 	 Excess of removed solids Odours from the removed solids
Causes	 Low HRT (too high flow speed) 	 High HRT (too low flow speed)
Tests- Analysis	 Measure inorganic SS in/out the sand trap at different flowrates Measure the flowrate speed in the sand trap If aerated, measure the air flowrate 	 Measure the VSS in the removed solid fraction Measure the flow speed in the channel If aerated, measure the air flowrate
Actions	 Increase the wet section (water level) if possible If mechanical, reduce the rotating speed 	 Reduce the number of parallel units Reduce the wet section (water level) if possible If mechanical, increase the rotating speed

Sedimentation

The goal is to remove readily settleable solids and floating materials thus reducing the suspended solids content; so quiet conditions are set up in the sedimentation basin. The sedimentation process takes place in circular or rectangular basins made of concrete or iron, having the bottom lightly sloped towards a zone where the sludge is conveyed by appropriate withdrawal devices.

	HRT [h]	Overflow rate [m ³ m ⁻² h ⁻¹]
Primary Sedimentation	1,5 – 2,0	0,8 - 1,2
Primary Sedimentation upstream the Trickling filters	3,0-4,0	0,5 - 0,8
Secondary Sedimentation downstream the Trickling filters	3,0	0,5 - 0,8
Secondary sedimentation	3,0	0,5

Typical operational data for different type of clarifier

Basically, in a primary clarifiers, removal efficiency for BOD and TSS are mainly related to the HRT and the its influent concentration

Sedimentation

Problem	Sludge floating on water surface	Low efficiency in floating solids removal
Evidences	 Solids on water surface H₂S odour 	 Floating solids in the effluent from the settler
Causes	 Rising sludge due to high retention time in the settler (also in parts of the tanks) 	 Floating solids (oils and scums) removal devices do not work properly
Tests- Analysis	 Measure SST in the extracted sludge Check the sludge extraction devices Check dead zones in the settler 	 Measure the oil content in different WWTP sections Check the removal devices
Actions	 Increase the sludge extraction (duration, frequency, flowrate) Repair or replace the sludge extraction devices 	 Install devices to avoid floating solids discharge Install efficient scum-skimmers Improve oils removal in primary treatments (floatation)

Sedimentation

Problem	Sludge in the effluent	Floating sludge in the settler
Evidences	 Too high SS in the effluent 	Too high SS in the effluentEvidence of floating sludge
Causes	 Not floc-structured sludge (bulking) Too high Hydraulic Load Failures in the sludge extraction devices 	 Denitrification process in the settler
Tests- Analysis	 Measure turbidity and SS in the effluent Check the sludge extraction flowrate and the proper working Check the proper weirs design 	 Measure nitrite and nitrate coming out from the activated sludge tank Calculate SRT Check the air flowrate
Actions	 Improve and modify the biological process avoiding Modify/Maintain weirs and extraction devices Increase sludge extraction flowrate 	 Move the floated sludge Reduce the SRT Improve sludge extraction

Activated sludge treatment step takes place into **aeration tanks**, whose footprint shape has to be defined according to the aeration devices to be installed.

Rectangular tanks have to be realised when diffused aeration devices are installed. When mechanical aeration devices are installed, **circular shapes** can be choosen as well, especially in the case of small WWTPs.

- Diffused aeration systems consist of submerged diffusors, air pipes and blowers.
- **Mechanical aerators** can be with vertical axis or horizontal axis; both of them can be classified into submerged and superficial ones.

Basic parameters that characterize the activated sludge process are:

- > HRT, Hydraulic Retention Time into the aeration tank
- > TSS into the mixed liquor
- Organic Load referred to the biomass
- Volumetric Organic Load
- SRT, Sludge Retention Time
- Recycle Ratio
- Type of flow into the tank (completely stirred, plug flow)
- Aeration System

Typical operational data for different activated sludge process

ocess	station system	pe of reactor	M L kgBOD	Volumetric loading rate	اھ MLSS	E HRT	Solid Retention Time	Air requirement	Recycle ratio	BOD ₅ removal efficiency
<u>д</u>	Ae	Τ	kgMLVSS d	$m^3 d$	m ³	ניין	[U]	kgBODremoved	[/8]	[/0]
Conventional (complete mix)	Air diffusion or Mechanical aerators	CSTR	0.2 – 0.6	0.8 – 1.9	3 - 6	3 - 5	5 - 15	35	25 – 100	85 – 95
Conventional (plug flow)	Air diffusion or Mechanical aerators	Plug flow	0.2 – 0.4	0.3 – 0.6	1.5 - 3	4 - 8	5 - 15	50 - 60	25 – 50	85 – 95
Extended Aeration	Air diffusion or Mechanical aerators	Plug flow or CSTR	0.05 – 0.15	0.15 – 0.4	3-6	18 – 36	20 – 30	75 – 110	75 – 150	75 – 95
Contact stabilization	Air diffusion or Mechanical aerators	Plug flow	0.2 - 0.6	0.9 – 1.2	1. – 3 4 - 10	0.5 – 1 3 - 6	5 - 15	50	25 - 100	80 – 90
High rate aeration	Mechanical aerators	Plug flow or CSTR	0.4 – 1.5	1.2 – 2.4	4 – 10	1 - 3	5 - 10		100 - 500	75 – 90
Step feed	Air diffusion	Plug flow	0.2 – 0.4	0.6 – 0.9	2 – 3.5	3 - 5	5 - 15	30 - 45	25 - 75	85 – 95
High purity oxygen	Mechanical aerators	CSTR	0.25 – 1	1.6 – 4	6 - 8	1 - 3	8 - 20		25 – 50	85 – 95

Problem	Bulking Sludge	Foaming in the aeration tank
Evidences	 Solids in the treated effluent Filamentous bacteria in the activated sludge 	 Foam on the tank surface
Causes	 Biological unit under-loading Toxic substances in the influent Insufficient aeration 	 Oils, greases and detergents in the influent
Tests- Analysis	 Measure SVI Microscopic observations Check the BOD:N:P ratio Measure T, pH, O₂ in the tank Check the organic load 	 Measure tensio-actives Measure SS and O₂ in the aeration tank Observe <i>Nocardia</i> in the sludges
Actions	 Chlorinate the sludge recycling (5- 15 gCl₂ kg⁻¹ SS d⁻¹) Add chemicals Increase SRT Inoculate sludge Realise a selector 	 Remove foams mechanically Use water to remove foams Add Chlorine in the aeration tank

Problem	Low oxygen in the tank	Variable organic load
Evidences	 Reduced treatment efficiency Low oxygen concentration Bulking and dark sludge 	SVI variabilitySRT variability
Causes	Insufficient aerationOrganic Load fluctuation	 Organic load fluctuations SSV fluctuation in the aeration tank
Tests- Analysis	 Measure O₂ in the tank Check influent characteristics 	 Measure SVI Measure SSV in the aeration tank Measure all the flowrates
Actions	 Increase aeration Install oxygen-based control devices Increase the aeration tank volume 	 Modify plant operation in order to stabilise control parameters (especially SRT)

Anaerobic Treatment

The most diffused types of anaerobic reactor are:

- ✓ Anaerobic contact process;
- ✓ UASB (Upflow Anaerobic Sludge Blanket)
- ✓ Upflow and Downflow attached growth processes
- ✓ Fluidized Bed Reactor

Basing on the OLR (Organic Loading Rate) the anaerobic processes can be classified in low rate (up to 5 kg COD m⁻³ d⁻¹) and high rate reactors.

Wastewater load and temperature affect the feasibility of wastewater anaerobic treatment. Generally, COD concentration higher than $1550 - 2000 \text{ g m}^{-3}$ and reactor temperature in the range of 25-35°C are needed.

The main process control parameters are listed below:

- Chemical and biological wastewater characteristics
- > Temperature
- Organic Loading Rate
- Hydraulic Retention Time
- Biogas production

Lagoons

Suspended growth lagoons are shallow earthen basins varying in depth from 1 to 6m.

The **Aerated Lagoons** depth ranges usually between 1.8 and 6m, mixing and aeration is provided through the use of slow-speed surface aerators mounted on floats. **Non Aerated Lagoons** can be classified in aerobic, facultative and anaerobic lagoons, depending on the main environmental conditions: biological conversion is carried out in aerobic and/or anaerobic conditions.

The aerobic lagoons depth usually ranges between 1 and 1.5m in order to guarantee sufficient oxygen concentration in the water. The anaerobic lagoons are deeper than the others and the main biological conversion is essentially anaerobic.

Lagoon		Depth [m]	OLR [kg BOD₅ ha ⁻¹ d ⁻¹]	HRT [d]	BOD ₅ removal [%]
Aerated		1.5 – 6		3 – 10	80 – 95
	Aerobic	1 –1.5	40 – 120	10 – 40	80 – 95
Non aerated	Facultative	1 – 2	20 - 80	7 – 30	80 – 95
	Anaerobic	2.5 - 5		20 - 50	50 - 85

Typical operational data for different lagoons

Lagoons

Problem	Foul smell emanation due to high organic load	Abnormal mosquitoes growth
Evidences	 Foul smell emanation from the lagoon pH and DO (Dissolved Oxygen) reduction trend 	 Mosquitoes presence
Causes	 Biological oxygen demand higher than the available oxygen 	 Presence of stagnant water and/or dead zones in the lagoon where a abnormal common weed growth is observed
Tests- Analysis	 Measure the pH and DO 	 Observation of weed growth
Actions	 Reduce the organic loading rate Install suitable aerator, converting the lagoon in an aerated lagoon 	 Remove common weed Use of insecticides (in this case the interruption of the incoming wastewater for 1 –2 days is needed)

