Dr. Sebastian Oberst

Bio:  Sebastian Oberst joined the University of Technology Sydney in 2017 and holds Visiting Fellowships at the University of New South Wales (UNSW) and a Senior Research Position at the Hamburg University of Technology (TUHH). He previously worked at the Imperial College London (Endeavour Fellowship), the Technical University Munich, and the University of New South Wales (UNSW) in Canberra as Postdoctoral Fellow/ Research Associate.

Sebastian Oberst did his PhD in vibro-acoustics at the UNSW Canberra under the supervision of Prof Joseph C.S. Lai. His PhD focussed on friction-induced instabilities, in particular its nonlinear dynamics and radiated sound. He was employed as ARC Research Associate/ Teaching Fellow (2011-2014) working on termite communication and as Research Associate/ Mechanical Engineering (2015-2016) working for UNSW Canberra Space. In 2015 he was awarded an Endeavour Postdoctoral Research Fellowship by the Australian Government to work on biomechanics (hip squeak) at the Imperial College London together with Prof Norbert Hoffmann. In 2016 the Australian Academy of Sciences nominated Dr Oberst for a Japan Society for the Promotion of Science Fellowship (JSPSF); he took also the role of a Chief investigator on a DFG project (Priority Program SPP 1897); both the JSPSF and the CI position he revoked to take a permanent position as Senior Lecturer at the newly founded Centre for Audio, Acoustics and Vibration (UTS). His current research interest lies in extracting acoustic signatures of insects and the application of NTSA to various oscillatory phenomena.

Research: Sebastian Oberst has worked in dynamics, vibrations and acoustics since 2007. His main research interests are:

  • Nonlinear dynamics

    In particular the use of Nonlinear Time Series Analysis applied to instability predictions as applied to friction-induced vibrations (brake squeal), micro-vibrations in thin-elastic structures (space engineering), oscillatory phenomena of hydrothermal systems (geology).

  • Bioacoustics and behavioural ecology

    Studying interspecies vibrational communication (biotremology) in ants and termites; and foraging decisions of termites based on biotremology


Google Scholarimage/svg+xmlGoogle ScholarGoogle Scholar

Peer-reviewed journal publications

  1. Stender, M.; Adams, C.; Wedler, M.; Grebel, A.; Hoffmann, Nobert (2021): Explainable machine learning determines effects on the sound absorption coefficient measured in the impedance tube. In: The Journal of the Acoustical Society of America 149 (3), S. 1932–1945. DOI: 10.1121/10.0003755.
  2. Tatzko, S.; Stender, M.; Jahn, M.; Hoffmann, N. (2021): Limit cycle computation of self-excited dynamic systems using nonlinear modes. In: Proc. Appl. Math. Mech. 20 (1), e202000340. DOI: 10.1002/pamm.202000340.
  3. Nitti, A.; Stender, M.; Hoffmann, N.; Papangelo, A. (2021): Spatially localized vibrations in a rotor subjected to flutter. In: Nonlinear Dyn. DOI: 10.1007/s11071-020-06171-8.
  4. Kellner, L.; Stender, M.; von Bock und Plach, F.; Ehlers, S.; Analyzing the complexity of ice with explainable machine learning models. (submitted to Ocean Engineering 01/11/2020)
  5. Stender, Merten; Hoffmann, Norbert; Papangelo, Antonio (2020): The Basin Stability of Bi-Stable Friction-Excited Oscillators. In: Lubricants 8 (12), S. 10 DOI: 10.3390/lubricants8120105.
  6. Di Bartolomeo, M.; Lazzari, A.; Stender, M.; Berthier, Y.; Saulot, A.; Massi, F. (2020). Experimental observation of thermally-driven frictional instabilities on C/C materials. Tribology International, 106724. DOI:10.1016/j.triboint.2020.106724
  7. Martin, Richard; Stender, Merten; Oberst, Sebastian (2020): Numerical Analysis of Dynamic Hysteresis in Tape Springs for Space Applications. In: Sebastian Oberst, Benjamin Halkon, Jinchen Ji und Terry Brown (Hg.): VIBRATION ENGINEERING FOR A SUSTAINABLE FUTURE. Active and passive noise. [S.l.]: SPRINGER NATURE, S. 179–184.
  8. Stender, Merten; Jahn, Martin; Hoffmann, Norbert; Wallaschek, Jörg (2020): Hyperchaos co-existing with periodic orbits in a frictional oscillator. In: Journal of Sound and Vibration 472, S. 115–203. DOI: 10.1016/j.jsv.2020.115203.
  9. Stender, Merten, Tiedemann, Merten, Spieler, David, Schoepflin, Daniel, Hoffmann, Norbert, & Oberst, Sebastian: Deep learning for brake squeal: Brake noise detection, characterization and prediction. Mechanical Systems and Signal Processing, 149, 107181. DOI: 10.1016/j.ymssp.2020.107181
  10. Block und Polach, Rüdiger U. Franz von; Gralher, Silke; Ettema, Robert; Kellner, Leon; Stender, Merten (2019): The non-linear behavior of aqueous model ice in downward flexure. In: Cold Regions Science and Technology. DOI: 1016/j.coldregions.2019.05.001.
  11. Didonna, Marco; Stender, Merten; Papangelo, Antonio; Fontanela, Filipe; Ciavarella, Michele; Hoffmann, Norbert (2019): Reconstruction of Governing Equations from Vibration Measurements for Geometrically Nonlinear Systems. In: Lubricants 7 (8), S. 64. DOI: 10.3390/lubricants7080064.
  12. Gnanasambandham, C.; Stender, M.; Hoffmann, N.; Eberhard, P. (2019): Multi-scale dynamics of particle dampers using wavelets: Extracting particle activity metrics from ring down experiments. In: Journal of Sound and Vibration 454, S. 1–13. DOI: 10.1016/j.jsv.2019.04.009.
  13. Jahn, Martin; Stender, Merten; Tatzko, Sebastian; Hoffmann, Norbert; Grolet, Aurélien; Wallaschek, Jörg (2019): The extended periodic motion concept for fast limit cycle detection of self-excited systems. In: Computers & Structures, S. 106–139. DOI: 10.1016/j.compstruc.2019.106139.
  14. Kellner, Leon; Stender, Merten; Bock und Polach, Rüdiger U. Franz von; Herrnring, Hauke; Ehlers, Sören; Hoffmann, Norbert; Høyland, Knut V. (2019): Establishing a common database of ice experiments and using machine learning to understand and predict ice behavior. In: Cold Regions Science and Technology 162, S. 56–73. DOI: 10.1016/j.coldregions.2019.02.007.
  15. Stender, Merten; Di Bartolomeo, Mariano; Massi, Francesco; Hoffmann, Norbert (2019): Revealing transitions in friction-excited vibrations by nonlinear time-series analysis. In: Nonlinear Dyn 47 (7), S. 209. DOI: 10.1007/s11071-019-04987-7.
  16. Stender, Merten; Oberst, Sebastian; Hoffmann, Norbert (2019): Recovery of Differential Equations from Impulse Response Time Series Data for Model Identification and Feature Extraction. In: Vibration 2 (1), S. 25–46. DOI: 10.3390/vibration2010002.
  17. Stender, Merten; Oberst, Sebastian; Tiedemann, Merten; Hoffmann, Norbert (2019): Complex machine dynamics: systematic recurrence quantification analysis of disk brake vibration data. In: Nonlinear Dyn 267 (1), S. 105. DOI: 10.1007/s11071-019-05143-x.
  18. Stender, Merten; Tiedemann, Merten; Hoffmann, Lando; Hoffmann, Norbert (2019): Determining growth rates of instabilities from time-series vibration data: Methods and applications for brake squeal. In: Mechanical Systems and Signal Processing 129, S. 250–264. DOI: 10.1016/j.ymssp.2019.04.009.
  19. Stender, Merten; Tiedemann, Merten; Hoffmann, Norbert (2019): Energy harvesting below the onset of flutter. In: Journal of Sound and Vibration 458, S. 17–21. DOI: 10.1016/j.jsv.2006.015.
  20. Papangelo, A.; Hoffmann, N.; Grolet, A.; Stender, M.; Ciavarella, M. (2018): Multiple spatially localized dynamical states in friction-excited oscillator chains. In: Journal of Sound and Vibration 417, S. 56–64. DOI: 10.1016/j.jsv.2017.11.056.
  21. Stender, Merten; Tiedemann, Merten; Hoffmann, Norbert; Oberst, Sebastian (2018): Impact of an irregular friction formulation on dynamics of a minimal model for brake squeal. In: Mechanical Systems and Signal Processing 107, S. 439–451. DOI: 10.1016/j.ymssp.2018.01.032.
  22. Pesaresi, L.; Stender, M.; Ruffini, V.; Schwingshackl, C. W. (2017): DIC Measurement of the Kinematics of a Friction Damper for Turbine Applications. In: Matthew S. Allen, Randall L. Mayes und Daniel Jean Rixen (Hg.): Dynamics of Coupled Structures, Volume 4: Proceedings of the 35th IMAC, A Conference and Exposition on Structural Dynamics 2017. Cham: Springer International Publishing, S. 93–101. Online verfügbar unter dx.doi.org/10.1007/978-3-319-54930-9_9.
  23. Stender, Merten; Tiedemann, Merten; Hoffmann, Norbert (2017): Characterization of complex states for friction-excited systems. In: Proc. Appl. Math. Mech. 17 (1), S. 45–46. DOI: 10.1002/pamm.201710013.
  24. Stender, Merten; Papangelo, Antonio; Allen, Matt; Brake, M.; Schwingshackl, C.; Tiedemann, Merten (2016): Structural Design with Joints for Maximum Dissipation. In: Shock & Vibration, Aircraft/Aerospace, Energy Harvesting, Acoustics & Optics, Volume 9: Springer, S. 179–187.
  25. Tiedemann, Merten; Stender, Merten; Hoffmann, Norbert (2015): On vibrations in non-linear, forced, friction-excited systems. In: Proc. Appl. Math. Mech. 15 (1), S. 267–268. DOI: 10.1002/pamm.201510124.

Current projects

Automotive Disc Brake Squeal [Vibro-acoustics, Friction-induced vibrations]

Physics-informed Learning, Physics-consistent machine Learning

Explainable machine learning

  • Selected Topics in Advanced Vibrations
  • Nonlinear Dynamics

Talks and Presentations

  • (17.02.2021) GAMM Annual Meeting: Machine Learning for Nonlinear Dynamics. Kassel/Germany (virtual event)
  • (05.02.2021) GAMM Fachauschuss Dynamik und Regelungstheorie: Machine Learning for Nonlinear Mechanical Vibrations. (virtual event)
  • (2020) International Conference on Noise and Vibration Engineering (ISMA): Deep learning for predicting brake squeal. Leuven / Netherlands
  • ... to be completed soon!